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FairMOT : On the Fairness of Detection and
Re-Identification in Multiple Object Tracking

Yifu Zhang*, Chunyu Wang*, Xinggang Wang’, Wenjun Zeng, Wenyu Liu

Abstract—There has been remarkable progress on object detection and re-identification (re-ID) in recent years which are the key
components of multi-object tracking. However, little attention has been focused on jointly accomplishing the two tasks in a single
network. Our study shows that the previous attempts ended up with degraded accuracy mainly because the re-ID task is not fairly
learned which causes many identity switches. The unfairness lies in two-fold: (1) they treat re-ID as a secondary task whose accuracy
heavily depends on the primary detection task. So training is largely biased to the detection task but ignores the re-ID task; (2) they
use ROI-Align to extract re-ID features which is directly borrowed from object detection. However, this introduces a lot of ambiguity
in characterizing objects because many sampling points may belong to disturbing instances or background. To solve the problems,
we present a simple approach FairMOT which consists of two homogeneous branches to predict pixel-wise objectness scores and
re-ID features. The achieved fairness between the tasks allows FairMOT to obtain high levels of detection and tracking accuracy
and outperform previous state-of-the-arts by a large margin on several public datasets. The source code and pre-trained models are

released at https:/github.com/ifzhang/FairMOT.

Index Terms—Multi-object tracking, one-shot, anchor-free, real-time.

1 INTRODUCTION

Multi-Object Tracking (MOT) has been a longstanding goal
in computer vision [!1], [2], [3], [4] which aims to estimate
trajectories for objects of interest in videos. The successful
resolution of the problem can benefit many applications such
as video analysis, action recognition, smart elderly care, and
human computer interaction.

The existing methods such as [1], [2], [3], [4], [5], [6],
[7] often address the problem by two separate models: the
detection model firstly localizes the objects of interest by
bounding boxes in each frame, then the association model
extracts re-identification (re-ID) features for each bounding
box and links it to one of the existing tracks according to
certain metrics defined on features. There has been remarkable
progress on object detection [8], [9], [10], [11] and re-ID [3],
[12] respectively in recent years which in turn significantly
boosts the overall tracking performance. However, those meth-
ods cannot perform real-time inference especially when there
are a large number of objects because the two models do not
share features and they need to apply the re-ID models for
every bounding box in the video.

With maturity of multi-task learning [13], one-shot trackers
which estimate objects and learn re-ID features using a single
network have attracted more attention [14], [15]. For example,
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Voigtlaender et al. [15] propose to add a re-ID branch on
top of Mask R-CNN to obtain proposals’ re-ID features using
ROI-Align. It reduces inference time by re-using the backbone
features for the re-ID network. Unfortunately, the tracking
accuracy drops remarkably compared to the two-step ones.
In particular, the number of ID switches increases by a large
margin. The result suggests that combining the two tasks
is a non-trivial problem and should be treated carefully. In
this paper, we aim to deeply understand the reasons behind
the failure, and present a simple yet effective approach. In
particular, three factors are identified.

1.1 Unfairness Caused by Anchors

The existing one-shot trackers such as Track R-CNN [15]
and JDE [14] are mostly anchor-based since they are directly
modified from anchor-based object detectors such as YOLO
[11] and Mask R-CNN [9]. However, we find in this study
that the anchor-based framework is not suitable for learning
re-ID features which result in a large number of ID switches
in spite of the good detection results.

Overlooked re-ID task: Track R-CNN [15] operates in a
cascaded style which first estimates object proposals (boxes)
and then pools re-ID features from the proposals to estimate
the corresponding re-ID features. It is worth noting that the
quality of re-ID features heavily depends on the quality of
proposals. As a result, in the training stage, the model is
seriously biased to estimate accurate object proposals rather
than high quality re-ID features. To summarize, this de facto
standard “detection first, re-ID secondary” framework makes
the re-ID network not fairly learned.

One anchor corresponds to multiple identities: The
anchor-based methods usually use ROI-Pool or ROI-Align to
extract features from each proposal. Most sampling locations
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Fig. 1. (a) Track R-CNN treats detection as the primary task and re-ID as the secondary one. Both Track R-CNN and
JDE are anchor-based. The red boxes represent positive anchors and the green boxes represent the target objects.
The three methods extract re-ID features differently. Track R-CNN extracts re-ID features for all positive anchors using
ROI-Align. JDE extracts re-ID features at the centers of all positive anchors. FairMOT extracts re-ID features at the
object center. (b) The red anchor contains two different instances. So it will be forced to predict two conflicting classes.
(c) Three different anchors with different image patches are response for predicting the same identity. (d) FairMOT
extracts re-ID features only at the object center and can mitigate the problems in (b) and (c).

in ROI-Align may belong to other disturbing instances or back-
ground as shown in Figure 1. As a result, the extracted features
are not optimal in terms of accurately and discriminatively
representing the target objects. Instead, we find in this work
that it is significantly better to only extract features at the
estimated object centers.

Multiple anchors correspond to one identity: In both
[15] and [14], multiple adjacent anchors, which correspond
to different image patches, may be forced to estimate the
same identity as long as their IoU is sufficiently large. This
introduces severe ambiguity for training. See Figure 1 for
illustration. On the other hand, when an image undergoes small
perturbation, e.g., due to data augmentation, it is possible that
the same anchor is forced to estimate different identities. In
addition, feature maps in object detection are usually down-
sampled by 8/16/32 times to balance accuracy and speed.
This is acceptable for object detection but it is too coarse for
learning re-ID features because features extracted at coarse
anchors may not be aligned with object centers.

1.2 Unfairness Caused by Features

For one-shot trackers, most features are shared between the
object detection and re-ID tasks. But it is well known that they
actually require features from different layers to achieve the
best results. In particular, object detection requires deep and
abstract features to estimate object classes and positions but
re-ID focuses more on low-level appearance features to distin-
guish different instances of the same class. We empirically find

that multi-layer feature aggregation is effective to address the
contradiction by allowing the two tasks (network branches)
to extract whatever features they need from the multi-layer
aggregated features. Without multi-layer fusion, the model will
be biased to the primary detection branch and generates low-
quality re-ID features. In addition, multi-layer fusion, which
fuses features from layers with different receptive fields, also
improves the capability to handle object scale variation which
is very common in practice.

1.3 Unfairness Caused by Feature Dimension

The previous re-ID works usually learn very high dimensional
features and have achieved promising results on the bench-
marks of their field. However, we find that learning lower-
dimensional features is actually better for one-shot MOT for
three reasons: (1) although learning high dimensional re-ID
features may slightly improve their capability to differentiate
objects, it notably harms the object detection accuracy due
to the competition of the two tasks which in turn also has
negative impact to the final tracking accuracy. So considering
that the feature dimension in object detection is usually very
low (class numbers + box locations), we propose to learn
low-dimensional re-ID features to balance the two tasks; (2)
when training data is small, learning low dimensional re-ID
features reduces the risk of over-fitting. The datasets in MOT
are usually much smaller than those in the re-ID area. So it
is favorable to decrease feature dimensions; (3) learning low
dimensional re-ID features improves the inference speed as
will be shown in our experiments.
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1.4 Overview of FairMOT

In this work, we present a simple approach termed as FairMOT
to jointly address the three fairness issues. It essentially differs
from the previous “detection first, re-ID secondary” framework
because the detection and re-ID tasks are treated equal in Fair-
MOT. Our contributions are three-fold. Firstly, we empirically
demonstrate and discuss the challenges faced by the previous
one-shot tracking frameworks which have been overlooked but
severely limit their performance. Second, on top of the anchor-
less object detection methods such as [10], we introduce a
framework to fairly balance the detection and re-ID tasks
which significantly outperforms the previous methods without
bells and whistles. Finally, we also present a self supervised
learning approach to train FairMOT on large scale detection
datasets which improves its generalization capability. This has
significant empirical values.

Figure 2 shows an overview of FairMOT. It adopts a very
simple network structure which consists of two homogeneous
branches for detecting objects and extracting re-ID features,
respectively. Inspired by [10], [16], [17], [18], the detection
branch is implemented in an anchor-free style which estimates
object centers and sizes represented as position-aware mea-
surement maps. Similarly, the re-ID branch estimates a re-ID
feature for each pixel to characterize the object centered at the
pixel. Note that the two branches are completely homogeneous
which essentially differs from the previous methods which
perform detection and re-ID in a cascaded style. So FairMOT
eliminates the unfair advantage of the detection branch as
reflected in Table 3, effectively learns high-quality re-ID
features and obtains a good trade-off between detection and
re-ID for better MOT results.

It is also worth noting that FairMOT operates on high-
resolution feature maps of strides four while the previous
anchor-based methods operate on feature maps of stride 32.
The elimination of anchors as well as the use of high-
resolution feature maps better aligns re-ID features to object
centers which significantly improves the tracking accuracy.
The dimension of re-ID features is set to be only 64 which
not only reduces computation time but also improves tracking
robustness by striking a good balance between the detection
and re-ID tasks. We equip the backbone network [19] with the
Deep Layer Aggregation operator [20] to fuse features from
multiple layers in order to accommodate both branches and
handle objects of different scales.

We evaluate FairMOT on the MOT Challenge benchmark
via the evaluation server. It ranks first among all trackers on the
2DMOT1S5 [21], MOT16 [22], MOT17 [22] and MOT20 [23]
datasets. When we further pre-train our model using our pro-
posed self supervised learning method, it achieves additional
gains on all datasets. In spite of the strong results, the approach
is very simple and runs at 30 FPS on a single RTX 2080Ti
GPU. It sheds light on the relationship between detection and
re-ID in MOT and provides guidance for designing one-shot
video tracking networks.

2 RELATED WORK

We first review the related work on MOT including both deep
learning and non-deep learning based ones. Then we briefly
talk about video object detection since it is also related to
object tracking. We discuss the pros and cons of the methods
and compare them to our approach.

2.1 Non-deep Learning MOT Methods

Multi-object tracking can be classified into online methods [1],
[24], [25], [26], [27] and batch methods [28], [29], [30], [31],
[32], [33] based on whether they rely on future frames. Online
methods can only use current and previous frames while batch
methods use the whole sequence.

Most online methods assume object detection is available
and focus on the data association step. For example, SORT
[1] first uses Kalman Filter [34] to predict future object
locations, computes their overlap with the detected objects in
future frames, and finally adopts Hungarian algorithm [35]
for tracking. IOU-Tracker [24] directly associates detections
in neighboring frames by their spatial overlap without using
Kalman filter and achieves 100K fps inference speed (detection
time not counted). Both SORT and IOU-Tracker are widely
used in practice due to their simplicity. However, they may
fail for challenging scenarios such as crowded scenes and
fast camera motion due to lack of re-ID features. Bae et
al. [26] apply Linear Discriminant Analysis to extract re-
ID features for objects which achieves more robust tracking
results. Xiang et al. [25] formulate online MOT as Markov
Decision Processes (MDPs) and leverage online single object
tracking and reinforcement learning to decide birth/death and
appearance/disappearance of tracklets.

The class of batch methods have achieved better results than
the online ones due to its effective global optimization in the
whole sequence. For example, Zhang et al. [28] build a graph-
ical model with nodes representing detections in all frames
for multi-object tracking. The global optimum is searched
using a min-cost flow algorithm, which exploits the specific
structure of the graph to reach the optimum faster than Linear
Programming. Berclaz ef al. [29] also treat data association as
a flow optimization task and use the K-shortest paths algorithm
to solve it, which significantly speeds up computation and
reduces parameters that need to be tuned. Milan er al. [31]
formulate multi-object tracking as minimization of a continu-
ous energy and focus on designing the energy function. The
energy depends on locations and motion of all targets in all
frames as well as physical constraints.

2.2 Deep Learning MOT Methods

The rapid development of deep learning has motivated re-
searchers to explore modern object detectors instead of using
the baseline detection results provided by the benchmark
datasets. For example, some best performing methods such
as [2], [4], [5], [6], [7] treat object detection and re-ID as two
separate tasks. They first apply CNN-based object detectors
such as Faster R-CNN [8] and YOLOvV3 [11] to localize all
objects of interest in input images. Then in a separate step,
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Fig. 2. Overview of our one-shot tracker FairMOT. The input image is first fed to an encoder-decoder network to
extract high resolution feature maps (stride=4). Then we add two homogeneous branches for detecting objects and
extracting re-ID features, respectively. The features at the predicted object centers are used for tracking.

they crop the images according to the boxes and feed them
to an identity embedding network to extract re-ID features
which are used to link the boxes over time. The linking step
usually follows a standard practice which first computes a cost
matrix according to the re-ID features and Intersection over
Unions (IoU) of the bounding boxes and then uses the Kalman
Filter [34] and Hungarian algorithm [35] to accomplish the
linking task. A small number of works such as [5], [6], [7]
also propose to use more complicated association strategies
such as group models and RNNs.

The main advantage of the two-step methods is that they
can develop the most suitable model for each task separately
without making compromise. In addition, they can crop the
image patches according to the detected bounding boxes and
resize them to the same size before estimating re-ID features.
This helps to handle the scale variations of objects. As a result,
these approaches [4] have achieved the best performance on
the public datasets. However, they are usually very slow
because the two tasks need to be done separately without
sharing. So it is hard to achieve video rate inference which
is required in many applications.

With the quick maturity of multi-task learning [13], [36],
[37] in deep learning, one-shot MOT has begun to attract
more research attention. The core idea is to simultaneously
accomplish object detection and identity embedding (re-ID
features) in a single network in order to reduce inference time.
For example, Track-RCNN [15] adds a re-ID head on top of
Mask R-CNN [9] and regresses a bounding box and a re-
ID feature for each proposal. Similarly, JDE [14] is built on
top of YOLOV3 [1 1] which achieves near video rate inference.
However, the accuracy of the one-shot trackers is usually lower
than that of the two-step ones.

Our work also belongs to one-shot tracker. Different from
the previous works, we deeply investigate the reasons behind
the failure and find that the re-ID task is treated unfairly

compared to the detection task from three aspects. On top
of that, we propose FairMOT which achieves a good balance
between the two tasks. We show that the tracking accuracy is
improved significantly without heavy engineering efforts.

Video Object Detection (VOD) is related to MOT in the
sense that it leverages object tracking to improve object
detection [38], [39] in challenging frames. For example,
Tang et al. [40] detect object tubes in videos which aims
to enhance classification scores in challenging frames based
on their neighboring frames. The detection rate for small
objects increases by a large margin on the benchmark dataset.
Similar ideas have also been explored in [40], [41], [42], [43],
[44].0ne main limitation of these tube-based methods is that
they are extremely slow especially where there are a large
number of objects in videos.

3 FAIRMOT

In this section, we present the technical details of FairMOT
including the backbone network, the object detection branch,
the re-ID branch as well as training details.

3.1 Backbone Network

We adopt ResNet-34 as backbone in order to strike a good
balance between accuracy and speed. An enhanced version
of Deep Layer Aggregation (DLA) [10] is applied to the
backbone to fuse multi-layer features as shown in Figure 2.
Different from original DLA [20], it has more skip connections
between low-level and high-level features which is similar
to the Feature Pyramid Network (FPN) [45]. In addition,
convolution layers in all up-sampling modules are replaced
by deformable convolution such that they can dynamically
adjust the receptive field according to object scales and poses.
These modifications are also helpful to alleviate the alignment
issue. The resulting model is named DLA-34. Denote the size
of input image as Himage X Wimage, then the output feature
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map has the shape of C' x H x W where H = Hjpage/4
and W = Winage /4. Besides DLA, other deep networks that
provide multi-scale convolutional features, such as Higher
HRNet [46], can be used in our framework to provide fair
features for both detection and re-ID.

3.2 Detection Branch

Our detection branch is built on top of CenterNet [10] but other
anchor-free methods such as [16], [18], [47], [48] can also
be used. We briefly describe the approach to make this work
self-contained. In particular, three parallel heads are appended
to DLA-34 to estimate heatmaps, object center offsets and
bounding box sizes, respectively. Each head is implemented
by applying a 3 x 3 convolution (with 256 channels) to the
output features of DLA-34, followed by a 1 x 1 convolutional
layer which generates the final targets.

3.2.1

This head is responsible for estimating the locations of the
object centers. The heatmap based representation, which is
the de facto standard for the landmark point estimation task, is
adopted here. In particular, the dimension of the heatmap is 1x
H x W . The response at a location in the heatmap is expected
to be one if it collapses with the ground-truth object center.
The response decays exponentially as the distance between the
heatmap location and the object center.

For each GT box b’ = (xll,yi,xé,yé) in the image, we

Heatmap Head

compute the object center (cl,c;) as ¢}, = 81T and ¢, =

x Ly
y1+y2 , respectively. Then its location on the feature map is

obtamed by dividing the stride (¢,,¢},) = (L%J, L J) Then
the heatmap response at the location (z,y) is computed as

(@=3) 2 +(y—5})2
My, = Zfil exp 293 where N represents the
number of objects in the image and o represents the standard
deviation. The loss function is defined as pixel-wise logistic

regression with focal loss [49]:

— M) )"log( May) Moy =1;

L = —_ Y & Y/ R Yy 5
et Z{ — Mauy)? (May)*log(1 — May)  otherwise,
(1)

where M is the estimated heatmap, and «, /3 are the pre-
determined parameters in focal loss.

3.2.2 Box Offset and Size Heads

The box offset head aims to localize objects more precisely.
Since the stride of the final feature map is four, it will introduce
quantization errors up to four pixels. This branch estimates a
continuous offset relative to the object center for each pixel
in order to mitigate the impact of down-sampling. The box
size head is responsible for estimating height and width of the
target box at each location.

Denote the output of the size and offser heads as S e
RW*Hx2 and O € RW>H*2  respectively. For each GT box
b.i = (ml,yhxg,yQ) in the image, we compute its size as
st = (28 — 2%, y4 —yt). Similarly, the GT offset is computed

as o' = (%, c4 )— (% j |2 J) Denote the estimated size and
offset at the correspondlng location as §* and 0°, respectively.
Then we enforce [; losses for the two heads:

N
Luox = 3 o = &ll1 + [Is — &)1 @)

=1

3.3 Re-ID Branch

Re-ID branch aims to generate features that can distinguish
objects. Ideally, affinity among different objects should be
smaller than that between same objects. To achieve this goal,
we apply a convolution layer with 128 kernels on top of
backbone features to extract re-ID features for each location.
Denote the resulting feature map as E € R'28XWxH The
re-ID feature E, , € R'?® of an object centered at (z,y) can
be extracted from the feature map.

3.3.1 Re-ID Loss

We learn re-ID features through a classification task. All object
instances of the same identity in the training set are treated as
the same class. For each GT box b’ = (x%,yi, x4, v4) in the
image, we obtain the object center on the heatmap (cI,cy)
We extract the re-ID feature vector Ez ) and learn to map it
to a class distribution vector P = {p(k ) s [1, K]}. Denote
the one-hot representation of the GT class label as L’ (k). Then

we compute the re-ID loss as:

Lidenlily = - Z Z LZ

=1 k=1

k)log(p(k)), (3)

where K is the number of classes. During the training process
of our network, only the identity embedding vectors located at
object centers are used for training, since we can obtain object
centers from the objectness heatmap in testing.

3.4 Training FairMOT

We jointly train the detection and re-ID branches by adding the
losses (i.e., Eq. (1), Eq. (2) and Eq. (3)) together. In particular,
we use the uncertainty loss proposed in [50] to automatically
balance the detection and re-ID tasks:

Ldelection = Lheat + LbOXa 4
1
2(
where wy and wq are learnable parameters that balance the two
tasks. Specifically, given an image with a few objects and their
corresponding IDs, we generate ground-truth heatmaps, box
offset and size maps as well as one-hot class representation of
the objects. These are compared to the estimated measures to
obtain losses to train the whole network.

In addition to the standard training strategy presented above,
we propose a weakly supervised learning method to train
FairMOT on image-level object detection datasets such as
COCO. Inspired by [51], we regard each object instance in
the dataset as a separate class and different transformations
of the same object as instances in the same class. The
adopted transformations include HSV augmentation, rotation,

Liotal = Lgetection + leennty + wy + w2) (5)
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scaling, translation and shearing. We pre-train our model on
the CrowdHuman dataset [52] and then finetune it on the
MOT datasets. With this self supervised learning approach,
we further improve the final performance.

3.5 Online Inference

In this section, we present how we perform online inference,
and in particular, how we perform association with the detec-
tions and re-ID features.

3.5.1 Network Inference

The network takes a frame of size 1088 x 608 as input which
is the same as the previous work JDE [14]. On top of the
predicted heatmap, we perform non-maximum suppression
(NMS) based on the heatmap scores to extract the peak
keypoints. We keep the locations of the keypoints whose
heatmap scores are larger than a threshold. Then, we compute
the corresponding bounding boxes based on the estimated
offsets and box sizes. We also extract the identity embeddings
at the estimated object centers. In the next section, we discuss
how we associate the detected boxes over time using the re-ID
features.

3.5.2 Online Association

We follow the standard online tracking algorithm to associate
boxes. We first initialize a number of tracklets based on the
estimated boxes in the first frame. Then in the subsequent
frame, we link the detected boxes to the existing tracklets ac-
cording to their cosine distances computed on Re-ID features
and their box overlap by bipartite matching [35]. We also use
Kalman Filter [34] to predict the locations of the tracklets in
the current frame. If it is too far from the linked detection, we
set the corresponding cost to infinity which effectively prevents
from linking the detections with large motion. We update the
appearance features of the trackers in each time step to handle
appearance variations as in [53], [54].

4 EXPERIMENTS
4.1 Datasets and Metrics

There are six training datasets briefly introduced as follows:
the ETH [55] and CityPerson [56] datasets only provide box
annotations so we only train the detection branch on them.
The CalTech [57], MOT17 [22], CUHK-SYSU [58] and PRW
[12] datasets provide both box and identity annotations which
allows us to train both branches. Some videos in ETH also
appear in the testing set of the MOT16 which are removed
from the training dataset for fair comparison. The overall
training strategy is described in Section 3.4, which is the same
as [14]. For the self-supervised training of our method, we
use the CrowdHuman dataset [52] which only contains object
bounding box annotations.

We extensively evaluate a variety of factors of our approach
on the testing sets of four benchmarks: 2DMOT15, MOT16,
MOT17 and the recently released MOT20. Following the
common practices in MOT, we use Average Precision (AP)
for evaluating detection performance, and True Positive Rate

TABLE 1
Comparison of different re-ID feature extraction
(sampling) strategies on the validation set of MOT17.
The rest of the models are kept the same for fair
comparison. 1 means the larger the better and | means
the smaller the better. The best results are shown in bold.

Feature Extraction Anchor MOTAT IDF1T IDs| TPR?T
FairMOT (ROI-Align) v 68.7 71.0 331 93.1
FairMOT (POS-Anchor) v 69.0 70.3 434 93.9
FairMOT (Center) 69.1 72.8 299 94.4
FairMOT (Center-BI) 68.8 74.3 303 94.9
FairMOT (Two-Stage) v 69.0 68.2 388 90.5

(TPR) at a false accept rate of 0.1 for rigorously evaluating re-
ID features with ground-truth detections. We use the CLEAR

metric [59] and IDFI [60] to evaluate overall tracking accu-
racy.
4.2 Implementation Details

We use a variant of DLA-34 proposed in [10] as our default
backbone. The model parameters pre-trained on the COCO
dataset [61] are used to initialize our model. We train our
model with the Adam optimizer [62] for 30 epochs with a
starting learning rate of e~*. The learning rate decays to e~
at 20 epochs. The batch size is set to be 12. We use standard
data augmentation techniques including rotation, scaling and
color jittering. The input image is resized to 1088 x 608 and
the feature map resolution is 272 x 152. The training step takes
about 30 hours on two RTX 2080 Ti GPUs.

4.3 Ablative Studies

In this section, we present rigorous studies of the three
critical factors in FairMOT including anchor-less re-ID feature
extraction, feature fusion and feature dimensions by carefully
designing a number of baseline methods.

4.3.1

We evaluate four strategies for sampling re-ID features from
the detected boxes which are frequently used by previous
works [14] [15]. The first strategy is ROI-Align used in
Track R-CNN [15]. It samples features from the detected
proposals using ROI-Align. As discussed previously, many
sampling locations deviate from object centers. The second
strategy is POS-Anchor used in JDE [14]. It samples features
from positive anchors which may also deviate from object
centers. The third strategy is “Center” used in FairMOT. It
only samples features at object centers. Recall that, in our
approach, re-ID features are extracted from discretized low-
resolution maps. In order to sample features at accurate object
locations, we also try to apply Bi-linear Interpolation (Center-
BI) to extract more accurate features.

We also evaluate a two-stage approach to first detect object
bounding boxes and then extract re-ID features. In the first
stage, the detection part is the same as our FairMOT. In the
second stage, we use ROI-Align [9] to extract the backbone

Fairness Issue in Anchors
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TABLE 2
Comparison of different backbones on the validation set
of MOT17 dataset. The best results are shown in bold.

Backbone MOTAT IDF11 IDs] APt TPRT
ResNet-34 63.6 67.2 435 75.1 90.9
ResNet-50 63.7 67.7 501 75.5 91.9
ResNet-34-FPN 64.4 69.6 369 71.7 94.2
HRNet-W18 67.4 74.3 315 80.5 94.6
DLA-34 69.1 72.8 299 81.2 94.4

features based on the detected bounding boxes and then use a
re-ID head (a fully connected layer) to get re-ID features.

The results are shown in Table 1. Note that the five ap-
proaches are all built on top of FairMOT. The only difference
lies in how they sample re-ID features from detected boxes.
First, we can see that our approach (Center) obtains notably
higher IDF1 score and True Positive Rate (TPR) than ROI-
Align, POS-Anchor and the two-stage approach. This metric
is independent of object detection results and faithfully reflects
the quality of re-ID features. In addition, the number of ID
switches (IDs) of our approach is also significantly smaller
than the two baselines. The results validate that sampling
features at object centers is more effective than the strategies
used in the previous works. Bi-linear Interpolation (Center-
BI) achieves even higher TPR than Center because it samples
features at more accurate locations. The two-stage approach
harms the quality of the re-ID features.

4.3.2 Fairness Issue in Features

We aim to study the effectiveness of multi-layer feature fusion
in addressing the unfairness issue in features. To that end,
we compare a number of backbones such as vanilla ResNet
[19], Feature Pyramid Network (FPN) [45], High-Resolution
Network (HRNet) [63] and DLA-34 [10] in terms of re-ID
features and detection accuracy. Note that the rest of the factors
of these approaches such as training datasets are all controlled
to be the same for fair comparison. In particular, the stride of
the final feature map is four for all methods. We add three
up-sampling operations for vanilla ResNet to obtain feature
maps of stride four.

The results are shown in Table 2. By comparing the results
of ResNet-34 and ResNet-50, we surprisingly find that using
a larger network only slightly improves the overall tracking
result measured by MOTA. In particular, the quality of re-ID
features barely benefits from the larger network. For example,
IDFI only improves from 67.2% to 67.7% and TPR improves
from 90.9% to 91.9%, respectively. In addition, the number of
ID switches even increases from 435 to 501. All these results
suggest that using a larger network adds very limited values
to the final tracking accuracy.

In contrast, ResNet-34-FPN, which actually has fewer
parameters than ResNet-50, achieves a larger MOTA score
than ResNet-50. More importantly, 7PR improves significantly
from 90.9% to 94.2% which suggests that multi-layer feature
fusion has clear advantages over simply using larger networks.
In addition, DLA-34, which is also built on top of ResNet-
34 but has more levels of feature fusion, achieves an even

TABLE 3
Demonstration of feature conflict between the detection
and re-ID tasks on the validation set of the MOT17
dataset. “-det” means only the detection branch is trained
and the re-ID branch is randomly initialized.

Backbone MOTAT IDF171 IDs| AP?T TPR?T

ResNet-34 63.6 67.2 435 75.1 90.9

ResNet-34-det 63.7 60.4 597 76.1 36.7

DLA-34 69.1 72.8 299 81.2 94.4
TABLE 4

The impact of different backbones on objects of different
scales. Small: area smaller than 7000 pixels; Medium:
area from 7000 to 15000 pixels; Large: area larger than
15000 pixels. The best results are shown in bold.

Backbone APS APM APL TPRS TPRM TPRL IDsS IDsM IDst
ResNet-34 40.6 57.8 852917 857 888 |[190 87 118
ResNet-50 39.7 59.4 86.0(91.3 853 89.0 248 91 124
ResNet-34-FPN[45.9 61.0 854 (90.7 91.5 933 |[166 71 90
HRNet-W18 |51.1 63.7 85.7 (942 925 93.1 |168 55 56
DLA-34 468 65.1 88.8/92.7 912 918 |134 64 70

larger MOTA score. In particular, TPR increases significantly
from 90.9% to 94.4% which in turn decreases the number of
ID switches (IDs) from 435 to 299. The results validate that
feature fusion (both FPN and DLA) effectively improves the
discriminative ability of re-ID features. On the other hand,
although ResNet-34-FPN obtains equally good re-ID features
(TPR) as DLA-34, its detection results (AP) are significantly
worse than DLA-34. We think the use of deformable convo-
lution in DLA-34 is the main reason because it enables more
flexible receptive fields for objects of different sizes - it is
very important for our method since FairMOT only extracts
features from object centers without using any region features.
We can only get 65.0 MOTA and 78.1 AP when replacing
all the deformable convolutions with normal convolutions in
DLA-34. As shown in Table 4, we can see that DLA-34 mainly
outperforms HRNet-W18 on middle and large size objects.
To validate the existence of feature conflict between the
detection and re-ID tasks, we introduce a baseline ResNet-
34-det which only trains the detection branch (re-ID branch
is randomly initialized). We can see from Table 3 that the
detection result measured by AP improves by a large margin
if we do not train the re-ID branch which shows the conflict
between the two tasks. In particular, ResNet-34-det even
gets higher MOTA score than ResNet-34 because the metric

TABLE 5
Evaluation of re-ID feature dimensions on the validation
set of MOT17. The best results are shown in bold.

Backbone | dim , MOTA 1+ IDF1{ IDs| FPSt kK APt , TPR ¢
DLA-34 | 512 | 685 737 312 241 | 809 | 94.6
DLA-34 | 256 | 685 725 337 261 | 81.1 | 943
DLA-34 | 128 | 69.1 728 299 266 | 812 | 944
DLA-34 | 64 69.2 733 283 268 | 81.3 | 943




JOURNAL OF ATEX CLASS FILES

TABLE 6
Evaluation of the three ingredients in the data
association model. The backbone is DLA-34.

Box IoU Re-ID Features Kalman Filter | MOTA 1 IDF1 1 IDs |
v 67.8 67.2 648
v 68.1 70.3 435
v v 68.9 71.8 342
v v v 69.1 72.8 299

favors better detection than tracking results. In contrast, DLA-
34, which adds multi-layer feature fusion over ResNet-34,
achieves better detection as well as tracking results. It means
multi-layer feature fusion helps alleviate the feature conflict
problem by allowing each task to extract whatever it needs
for its own task from the fused features.

4.3.3 Fairness Issue in Feature Dimensionality

The previous one-shot trackers usually learn 512 dimensional
re-ID features following the two-step methods without ablation
study. However, we find in our experiments that the feature
dimension actually plays an important role in balancing de-
tection and tracking accuracy. Learning lower dimensional re-
ID features causes less harm to the detection accuracy and
improves the inference speed.

We evaluate multiple choices for re-ID feature dimensional-
ity in Table 5. We can see that 512 achieves the highest IDF
and TPR scores which indicates that higher dimensional re-ID
features lead to stronger discriminative ability. However, it is
surprising that the MOTA score consistently improves when
we decrease the dimension from 512 to 64. This is mainly
caused by the conflict between the detection and re-ID tasks. In
particular, we can see that the detection result (AP) improves
when we decrease the dimension of re-ID features. In our
experiments, we set the feature dimension to be 64 which
strikes a good balance between the two tasks.

4.3.4 Data Association Methods

This section evaluates the three ingredients in the data as-
sociation step including bounding box IoU, re-ID features
and Kalman Filter [34]. These are used to compute the
similarity between each pair of detected boxes. With that we
use Hungarian algorithm [35] to solve the assignment problem.
Table 6 shows the results. We can see that only using box
IoU causes a lot of ID switches. This is particularly true for
crowded scenes and fast camera motion. Using re-ID features
alone notably increases IDFI and decreases the number of ID
switches. In addition, adding Kalman filter helps obtain smooth
(reasonable) tracklets which further decreases the number of
ID switches. When an object is partly occluded, its re-ID
features become unreliable. In this case, it is important to
leverage box IoU, re-ID features and Kalman filter to obtain
good tracking performance.

4.3.5 Visualization of Re-ID Similarity

We use re-ID similarity maps to demonstrate the discriminative
ability of re-ID features in Figure 3. We randomly choose
two frames from our validation set. The first frame contains

TABLE 7
Effects of self supervised learning on the validation set of
MOT17. “CH” and “MIX” stand for CrowdHuman and the
composed five datasets introduced in Section 4.1,
respectively. - means no identity annotations are used.

Training Data | MOTA T IDF1 1 1IDsJ| | AP | TPR 1
MOT17 67.5 69.9 408 | 79.6 | 93.4
CH"+MOT17 71.1 75.6 327 | 83.0 | 93.6
MIX+MOT17 69.1 72.8 299 | 812 | 944

the query instance and the second frame contains the target
instance that has the same ID. We obtain the re-ID similarity
maps by computing the cosine similarity between the re-ID
feature of the query instance and the whole re-ID feature
map of the target frame, as described in Section 4.3.1 and
Section 4.3.2 respectively. By comparing the similarity maps
of ResNet-34 and ResNet-34-det, we can see that training
the re-ID branch is important. By comparing DLA-34 and
ResNet-34, we can see that multi-layer feature aggregation
can get more discriminative re-ID features. Among all the
sampling strategies, the proposed Center and Center-BI can
better discriminate the target object from surrounding objects
in crowded scenes.

4.4 Self-supervised Learning

We first pre-train FairMOT on the CrowdHuman dataset [52].
In particular, we assign a unique identity label for each
bounding box and train FairMOT using the method described
in section 3.4. Then we finetune the pre-trained model on the
target dataset MOT17.

Table 7 shows the results. First, pre-training via self-
supervised learning on CrowdHuman outperforms directly
training on the MOT17 dataset by a large margin. Second,
the self-supervised learning model even outperforms the fully-
supervised model trained on the “MIX” and MOT17 datasets.
The results validate the effectiveness of the proposed self-
supervised pre-training, which saves lots of annotation efforts
and makes FairMOT more attractive in real applications.

4.5 Results on MOTChallenge

We compare our approach to the state-of-the-art (SOTA)
methods including both the one-shot methods and the two-
step methods.

4.5.1 Comparing with One-Shot SOTA MOT Methods

There are only two published works of JDE [14] and Track-
RCNN [15] that jointly perform object detection and identity
feature embedding. We compare our approach to both of them.
Following the previous work [14], the testing dataset contains
6 videos from 2DMOTIS5. FairMOT uses the same training
data as the two methods as described in their papers. In
particular, when we compare to JDE, both FairMOT and JDE
use the large scale composed dataset described in Section 4.1.
Since Track R-CNN requires segmentation labels to train the
network, it only uses 4 videos of the MOT17 dataset which
has segmentation labels as training data. In this case, we also



JOURNAL OF IATEX CLASS FILES

ResNet-34 + Center DLA-34 + Center

DLA-34 + ROI-Align DLA-34 + POS-Anchor

DLA-34 + Center

Query Image Target Image

ResNet-34-det + Center

ResNet-34 + Center DLA-34 + Center

DLA-34 + ROI-Align DLA-34 + POS-Anchor

DLA-34 + Center

DLA-34 + Center-BI

DLA-34 + Two-Stage

Fig. 3. Visualization of the discriminative ability of the re-ID features. Query instances are marked as red boxes
and target instances are marked as green boxes. The similarity maps are computed using re-ID features extracted
based on different strategies (e.g., Center, Center-Bl, ROI-Align and POS-Anchor as described in Section 4.3.1) and
different backbones (e.g., ResNet-34 and DLA-34). The query frames and target frames are randomly chosen from

the MOT17-09 and the MOT17-02 sequence.

use the 4 videos to train our model. The CLEAR metric [59]
and IDF1 [60] are used to measure their performance.

The results are shown in Table 8. We can see that our
approach remarkably outperforms JDE [14]. In particular, the
number of ID switches reduces from 218 to 80 which is big
improvement in terms of user experience. The results validate
the effectiveness of the anchor-free approach over the previous
anchor-based one. The inference speed is near video rate for
the both methods with ours being faster. Compared with Track
R-CNN [15], their detection results are slightly better than ours
(with lower FN). However, FairMOT achieves much higher
IDF1 score (64.0 vs. 49.4) and fewer ID switches (96 vs. 294).
This is mainly because Track R-CNN follows the “detection
first, re-ID secondary” framework and use anchors which also
introduce ambiguity to the re-ID task.

4.5.2 Comparing with Two-Step SOTA MOT Methods

We compare our approach to the state-of-the-art trackers
including the two-step methods in Table 9. Since we do not use
the public detection results, the “private detector” protocol is
adopted. We report results on the testing sets of the 2DMOT15,
MOT16, MOT17 and MOT?20 datasets, respectively. Note that
all of the results are directly obtained from the official MOT
challenge evaluation server.

Our approach ranks first among all online and offline
trackers on the four datasets. In particular, it outperforms

TABLE 8
Comparison of the state-of-the-art one-shot trackers on
the 2DMOT 15 dataset. “MIX” represents the large scale
training dataset and “MOT17 Seg” stands for the 4
videos with segmentation labels in the MOT17 dataset.

Training Data Method MOTA? IDF14 IDs) FP ENJ FPSt
MIX JDE [14] 67.5 66.7 218 1881 2083 26.0
FairMOT (ours) 772 798 80 757 2094 30.9

MOT17 Seg |Track R-CNN [15]| 69.2 494 294 1328 2349 2.0
FairMOT/(ours) 70.2  64.0 96 1209 2537 30.9

other methods by a large margin. This is a very strong
result especially considering that our approach is very simple.
In addition, our approach achieves video rate inference. In
contrast, most high-performance trackers such as [4], [7] are
usually slower than ours.

4.5.3 Training Data Ablation Study

We also evaluate the performance of FairMOT using different
amount of training data. We can achieve 69.8 MOTA when
only using the MOT17 dataset for training, which already
outperforms other methods using more training data. When we
use the same training data as JDE [14], we can achieve 72.9
MOTA, which remarkably outperforms JDE. In addition, when
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Fig. 4. Example tracking results of our method on the test set of MOT17. Each row shows the results of sampled
frames in chronological order of a video sequence. Bounding boxes and identities are marked in the images. Bounding
boxes with different colors represent different identities. Best viewed in color.
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TABLE 9
Comparison of the state-of-the-art methods under the “private detector” protocol. It is noteworthy that FPS considers

Gk

both detection and association time. The one-shot trackers are labeled by “*”.

Dataset Tracker MOTAT IDF11 MT1 MLJ IDs| FPS1
MOT15 MDP_SubCNN [25] 47.5 55.7 30.0% 18.6% 628 <1.7
CDA_DDAL [64] 51.3 54.1 36.3% 22.2% 544 <12
EAMTT [65] 53.0 54.0 35.9% 19.6% 7538 <4.0
AP_HWDPL [66] 53.0 522 29.1% 20.2% 708 6.7
RARI15 [7] 56.5 61.3 45.1% 14.6% 428 <34
TubeTK" [44] 58.4 53.1 39.3% 18.0% 854 5.8
FairMOT (Ours)” 60.6 64.7 47.6% 11.0% 591 30.5
MOT16 EAMTT [65] 52.5 53.3 19.9% 34.9% 910 <55
SORTwHPD16 [1] 59.8 53.8 25.4% 22.7% 1423 <8.6
DeepSORT_2 [2] 61.4 62.2 32.8% 18.2% 781 <6.4
RAR16wVGG [7] 63.0 63.8 39.9% 22.1% 482 <14
VMaxx [67] 62.6 49.2 32.7% 21.1% 1389 <39
TubeTK" [44] 64.0 59.4 33.5% 19.4% 1117 1.0
JDE" [14] 64.4 55.8 35.4% 20.0% 1544 18.5
TAP [6] 64.8 73.5 38.5% 21.6% 571 <8.0
CNNMTT [5] 65.2 62.2 32.4% 21.3% 946 <53
POI [4] 66.1 65.1 34.0% 20.8% 805 <5.0
CTrackerV1™ [68] 67.6 57.2 32.9% 23.1% 1897 6.8
FairMOT (Ours)” 74.9 72.8 44.7% 15.9% 1074 25.9
MOT17 SST [69] 52.4 49.5 21.4% 30.7% 8431 <39
TubeTK" [44] 63.0 58.6 31.2% 19.9% 4137 3.0
CTrackerV1" [68] 66.6 574 32.2% 24.2% 5529 6.8
CenterTrack” [70] 67.3 59.9 34.9% 24.8% 2898 22.0
FairMOT (Ours)” 73.7 723 43.2% 17.3% 3303 25.9
MOT20 FairMOT (Ours)” 61.8 67.3 68.8% 7.6 % 5243 13.2

TABLE 10
Results of the MOT17 test set when using different
datasets for training. “MIX” represents the large scale
dataset mentioned in part 4.1 and “CH” is short for the
CrowdHuman dataset. All the results are obtained from
the MOT challenge server. The best results are shown in

bold.
Training Data Images Boxes Identities, MOTAT IDF1T IDs|
MOT17 5K 112K 05K 69.8 69.9 3996
MOT17+MIX 54K 270K 8.7K 72.9 73.2 3345
MOT17+MIX+CH | 73K 740K  8.7K 73.7 72.3 3303

we perform self supervised learning on the CrowdHuman
dataset, the MOTA score improves to 73.7. The results suggest
that our approach is not data hungry which is a big advantage
in practical applications.

4.6 AQualitative Results

Figure 4 visualizes several tracking results of FairMOT on the
test set of MOT17 [22]. From the results of MOT17-01, we can
see that our method can assign correct identities with the help
of high-quality re-ID features when two pedestrians cross over
each other. Trackers using bounding box IOUs [1], [24] usually
cause identity switches under these circumstances. From the
results of MOT17-03, we can see that our method perform
well under crowded scenes. From the results of MOT17-08,
we can see that our method can keep both correct identities
and correct bounding boxes when the pedestrians are heavily

occluded. The results of MOT17-06 and MOT17-12 show that
our method can deal with large scale variations. This mainly
attributes to the using of multi-layer feature aggregation. The
results of MOT17-07 and MOT17-14 show that our method
can detect small objects accurately.

5 CONCLUSION

Start from studying why the previous single-shot methods
(e.g., [14]) fail to achieve comparable results as the two-
step methods, we find that the use of anchors in object
detection and identity embedding is the main reason for the
degraded results. In particular, multiple nearby anchors, which
correspond to different parts of an object, may be responsible
for estimating the same identity which causes ambiguities
for network training. Further, we find the feature unfairness
issue and feature conflict issue between the detection and re-
ID tasks in previous MOT frameworks. By addressing these
problems in an anchor-free single-shot deep network, we
propose FairMOT. It outperforms the previous state-of-the-art
methods on several benchmark datasets by a large margin in
terms of both tracking accuracy and inference speed. Besides,
FairMOT is inherently training data-efficient and we propose
self-supervised training of multi-object trackers only using
bounding box annotated images, which both make our method
more appealing in real applications.
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